Startseite » Würfel Kombinationen / Wahrscheinlichkeit berechnen

Würfel Kombinationen / Wahrscheinlichkeit berechnen

Jeder, der schon einmal ein Würfelspiel gespielt hat, kennt die Aufregung. Eine ganz bestimmte Zahl wird bei dem nächsten Wurf benötigt. Da ein gewöhnlicher Würfel nur sechs verschiedene Zahlen besitzt, sollte das Ergebnis doch leicht erreicht werden. Trotzdem erscheint gefühlt immer die falsche Zahl. Rein mathematisch lässt sich dieses Phänomen ganz einfach in einem Baumdiagramm darstellen.

Ein Würfel:

Wird ein Würfel einmal geworfen, besteht eine Chance von 1/6 ein bestimmtes Ergebnis zu erreichen. Denn jede Zahl von 1 bis 6 ist genau einmal vorhanden. Die Chance liegt also bei 16.67 %. Ist der Wunsch da, eine ungerade Zahl zu würfeln besteht liegt die Wahrscheinlichkeit bei 50 %, also 3/6. Egal ob die 1, 3 oder 5 geworfen wird, das Ergebnis ist immer ungerade. Darf nur eine bestimmte Zahl nicht geworfen werden, liegt die Chance mit 5/6 bei 83 % sehr hoch. Die Gefahr, die unerwünschten Augen zu würfeln, ist nur bei 1/6, also bei 16 %.

Zwei Würfel:

Sind zwei Würfel im Spiel ändert sich die Berechnung. Jeder der einzelnen Würfel besitzt nach wie vor sechs Seiten mit sechs verschiedenen Augenzahlen. Die Wahrscheinlichkeit mit beiden Würfeln die gleiche Zahl zu würfeln liegt jetzt bei 1/6 * 1/6. Das Ergebnis dieser Rechnung ist 1/36. Die Höhe der Wahrscheinlichkeit ist bei nur noch etwa 2,78 %. Benötigt der Spieler eine bestimmte Punktzahl mit einem Wert von mehr als zwei, ergeben sich verschiedene Möglichkeiten. Die Zahl 3 lässt sich nur mit einer 1 und einer 2 erwürfeln. Die Möglichkeit liegt aber bei 2/36, da die Zahlen auf beiden Würfeln erscheinen können. Die 4 lässt sich schon leichter erreichen. 1 + 3 und 2 + 2 und damit 3/36, also 8 %. 5 Punkte zu erreichen gelingt mit 1 + 4 und 2 + 3, die Werte bleiben aber nicht gleich sondern steigen auf 4/36. Eine 6 kann mit 1 + 5, 2 + 4 und 3 + 3 erwürfelt werden. Jetzt liegt die Wahrscheinlichkeit bei 13,89 %.

Kniffel:

Die höchste Punktzahl kann bei diesem Spiel nur mit 5 gleichen Augen erreicht werden. Rechnerisch liegt die Wahrscheinlichkeit also bei 1/6 * 1/6 *1/6 *1/6 *1/6 = 1/7776 und damit bei etwas über 0,01 %. Daher ist die Freude so groß, wenn dieser Wurf gelingt. Hier bekommt der Begriff vom Würfelglück eine wirkliche Aussage.

Berechnung der Wahrscheinlichkeit:

Grundsätzlich wird diese Größe errechnet, indem die Anzahl der erwünschten Ergebnisse durch die Anzahl der möglichen Ergebnisse geteilt wird. Daraus ergibt sich dann die prozentuale Größe, mit der das erhoffte Ziel erreicht werden kann. Kann ein Ergebnis auf verschiedenen Wegen erreicht werden, steigt der Wert der Chancen im Verhältnis zur gleichbleibenden Größe der Möglichkeiten.

Einfluss der Wahrscheinlichkeitsrechnung auf Spiele:

Viele Spiele bewerten nach der Wahrscheinlichkeitsrechnung ihre Punktevergabe. Obwohl Scrabble kein Würfelspiel ist, sind die Werte der verschiedenen Buchstaben in mehrfacher Hinsicht danach vergeben. Die Buchstaben, die sehr häufig in dem Buchstabenbeutel vorhanden sind haben einen relativ geringen Wert. Hinzu kommt, dass diese Lettern in unserer Sprache in vielen Worten vorkommen. Sie sind also leicht zu finden und zusätzlich einfach zu nutzen. Seltene Buchstaben können nur in wenigen Worten eingefügt werden. Gelingt das dem Spielenden wird er durch den hohen Punktewert doppelt belohnt.

Fazit:

Die Berechnung der Wahrscheinlichkeit bei Würfeln lässt sich eindeutig erklären. Doch die Größe des Ergebnisses macht keine Vorhersage des nächsten Wurfes möglich. Selbst eine 90-prozentige Chance auf den Sieg lässt immer noch eine Möglichkeit zur Niederlage offen. Daher besitzen Würfelspiele ihre hohe Attraktivität. Das Spiel mit dem Risiko macht das Würfeln sehr spannend.

War dieser Artikel hilfreich?
JaNein

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert